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Let us consider the problem of diffusion and absorption of particles in the
earth's atmosphere. Let u = u{r,z) be the concentration of the diffusing
particles. We shall consider the atmospheric density to vary according to
the exponentlal law, and the earth to be plane. In cylindrical coordinates
system 7r,p,z, whose oz-axis is directed perpendicular to the earth's surface,
the diffusion equation

u, = div [D (z) grad u} — B (2) u
has the form
u, =D (2} (u, + r~in, + u,,) — B {z) u+ aD (z) u, (1)

Here p(z) is the diffusion coefficlent, ¥ 1s the reduced atmospheric
height and Bg{z) is the mean frequency of particle absorption

D (1) = D™, B (5) = Byt
a=1/H, Dy=D(z), Bo=B1(z) 2
We seek a solution to (l) under the boundary conditions
u<oo as 0K r<doo, —o0oLzLo0, u—s0 as VR4 22—=o00 (3)
end initial conditions
@

u=f{r 2 at t =10

where r(r,z) i1s a given function.

Assuming w = T () V (r) W (z), and substituting into (1), we separate vari-
ables

T, + MDT = 0, Uy r U, 4 %30 =0 6
3
W, 4 [w.:-“(z-z-) —%!;fz«(zﬂz.) —x— “z] W* =0 ®
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Upon substituting

~a(z- p A2 F L |
E=2070,  B=ph, Weja. T=at7
Equation (6) reduces to the form

2
W55*+l% WE* +[K*—;—-%-—4*8§—31W*~...~0 (l*: s‘;— 1+n,n=0, 1, 2,.. ) (7

A bounded solution to Equation (7) on (0,=) is given by the Laguerre
function [1]

ﬁ)n(s) (E) — Angallaa 81/|E é_d;‘; (gs+ne—-E)

A particular bounded solution to (1) may be given as
z

u=A, exp [— S -aé.dz ] Jaler) 0,08 (§) e MDut

2y

Since Equation (1) is homogeneous and linear, then considering 4, as
functions of x , we may write the general solution as a sum of the lintegrals
with respect to x . Integrating with respect to » from O to « , and

summing over »n from 0 to « , we get
oo

u= é@ [é. A, (%) exp (—:S. % ds ) Jy(ur) eV Du dx} @ ) )

In order to determine An(u), we set ¢t = 0 , ahd conslidering conditlon
(%), we have

exp (S %dz) f(r,2) = éﬁ [:SQAn (¢) J¢ (xr) dnj' ©,®(F)

The latter expression represents a Laguerre series in the variable &g
The coefficients of this series equal

o 1 [ z° a . .
OS A, () Tolr) du.=j;§ exp (ZS.?dz) f(r, )0 ,® () d
(I,=nIT{(n+ s+ 1)

The resulting expressions for the coefficlents of the Laguerre series

permit the determination of the quantity An(n) , 1f we use the representa-
tion of the given functlons as a Fourler-Bessel serles

[ z°

o0
a,00 = % S o7y (4r°) S exp (S 2 dz) f 0, )0 @ (&) dEodr®
no 3 s
Substituting the obtained quantity 4,.{n) in the general solution and
interchanging the order of integration and summation, we find

2°

u =:§:§ 1 (r°, 2°) exp (—-— S —;- dz) OSO i Iimn(s) ® o, ® E) ;NDE

Zy 0 n=f

If we observe that X uJy (xr)Jg (xr°) dwr°dr®dg®

ADy = A*20aDyt = (s 4 1 4 2n) atV DBy
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then upon summing with respect to n , we shall have

u=§:§f(r',z°)exP <—§.%dz) 2.inhaz;/m DXP[ (§+§°)M(2VB.DJ]

¢ 2VEE ] ) dherOdpogEo
I — | nJ, J dxrldred
XOS [ Zamn(at ¥ gy )0 0 Jo ber) durtartat

We introduce the variables

§ . £ —
S=Zmc W= Zmmo . C=a VD
and finally write the solution to (1) as

©0 00

o l/x X -
w = S S f (r°,2°) %17 exp [— (¢, + &,°)ooshC)] S I, @V EED) wlolxr)or?) X dnrodrodt®
00 1 0

)

The concentration of the particles in space may be regarded as the result
of the action of instantaneous point par-ticle sources, the distribution of
which being given by the function r(r®, 2°) . Changing the variable of
integration in (9) from £° to 2z°, we get

00 00
u = S S f (r°, 2°) Grédr®dz°.
0 —co
The influence function of the instantaneous point source 1s
AL ¢ I
6 =208 Zexp [— (& + Lo 0] {1, @VERD) W 06 Jy (0r) dx (10)
0
Moreover,
00 00
2n 5- S f(r,%2%) r°dr®dz® = 1
0 -0

To estimate the obtained quantities, and to determine the character of
the distribution of the partigcles in space with increasing time, we use._ the
asymptotic behavior of J, 2V EE,%). For large values of the argument 2V§1§1
the function I, may be represented as the serles

. - a V lﬁl
1, CVEL)= —° Ve {1 4 Z (— 1)¥ (4 — 1) (42— 39) . . .[42 — (2k — 1)’1}

—-_.._—_—‘ praem—r——

(4nV gL k=1 Kl 2% (2 Vglglo)k
Substituting this into (10), and integrating approximately, we obtain

ot g o

@ £Fro t
—ah xP [— (8y 4 EeohC 4+ 2 VEE, T @R
(P4 rY)a? VEE® } I ((rr%z2 VEL® )
4 ° 2

(11)
In the limit case, when g - O , the medium becomes uniform, while the

function ¢ ©becomes the influence function of the instantaneous point source
in a constant density medium, i.e.

1 (z— 22 4% 4 r™ rr°
= @apg)” P [" 4Dyt ]’0 ( 2D )
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This limiting process verifies the correctness of the assumptlons made.
The quantity of absorbed particles equals

g=B() G (12)

where G 1s defined by (11), and pg(z) by (2). If the source acts at the
point E —E° r = r° = (0 then (12) becomes
3"*’V§1§1’]

5, 1 EE® 1
1= T G B e [+ e 4 2 VEES — s —

lder the behavior of extremal points of a cloud,
ion of a source at the point with the coordi-
z = 2° For this, we equate the derivative

§10‘f. 1. ria®t 10‘/.
g — ol + - — o ———
48, gl/n 8 Enl '/

1, 4y, -
A+ 78 1”)9
with zero.

At the points with the coordinates z = & » , the function g vanishes,
while the geometric location of the points at which g assumes maximum
values, 1s given by Equation

1 1 1 5 1 1
gl”’hc - §, /'Exo h (1 - "8" Pga-’) - 'Z -+ '§' §1-‘/'§1.— h = 0 (13)

In this equation we may neglect the last term, then we have & quadratic
equation for gl’ls , the solution of which gives

. b 5coshC 2
82 = 5 g (1 — Harta?) [1 :!:(1 + W’Eoi};@ﬁ) ]
We write this expression as
bk 1 5coshC sinh C g
Elcl/' = 9cosh(] (1 — Yarta?) [1:t (1 + dexp(—a(z— 3)) (1 — 1/yr%a2)3 ) ] (19

Analysis of (14) shows that when ¢+ = O ,

z s 1 for Yyrlo® =0
- {1 i e 0 et < 15
13} 0 for 1 < Ygrlal

ir
ScoshC .
Tra— e >t

then we get from (14)

[ 1 /5usnCa} Dy exp (@ (2° — 2] \*
& Ve for 0K Hprrot <t (1)
L% | 5 smCaV Doexp o E — 2]

4 VB exp [—a (2 — z0) (1 — Ygra®)

These relations show that the layer with maximum concentration of pa{'ti—
cles moves 1in space. The velocity of this displacement decreases with in-

creasing t

From {16}, 1t follows that the helight of the layer wilth maximum concen-
-tration of particles practlically does not depend on large va‘}ues of . T_‘he
layer stops. For small values og the quantity PBo eXp [—a(_z — zp)} it will
be located below the line gz = z . If B. exp [— a (z° — 2g)] has a large
value, the layer of maximum particle concentration will be located above the
line 2z = z°, or will colncide with it. Expression (17) shows that as the
quantity sr°a® increases, the height of this layer increases,

for Yortad > 1 {(17)
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